Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 2(3): pgad011, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36896133

RESUMO

Hypertrophic cardiomyopathy (HCM) is an inherited disorder often caused by mutations to sarcomeric genes. Many different HCM-associated TPM1 mutations have been identified but they vary in their degrees of severity, prevalence, and rate of disease progression. The pathogenicity of many TPM1 variants detected in the clinical population remains unknown. Our objective was to employ a computational modeling pipeline to assess pathogenicity of one such variant of unknown significance, TPM1 S215L, and validate predictions using experimental methods. Molecular dynamic simulations of tropomyosin on actin suggest that the S215L significantly destabilizes the blocked regulatory state while increasing flexibility of the tropomyosin chain. These changes were quantitatively represented in a Markov model of thin-filament activation to infer the impacts of S215L on myofilament function. Simulations of in vitro motility and isometric twitch force predicted that the mutation would increase Ca2+ sensitivity and twitch force while slowing twitch relaxation. In vitro motility experiments with thin filaments containing TPM1 S215L revealed higher Ca2+ sensitivity compared with wild type. Three-dimensional genetically engineered heart tissues expressing TPM1 S215L exhibited hypercontractility, upregulation of hypertrophic gene markers, and diastolic dysfunction. These data form a mechanistic description of TPM1 S215L pathogenicity that starts with disruption of the mechanical and regulatory properties of tropomyosin, leading thereafter to hypercontractility and finally induction of a hypertrophic phenotype. These simulations and experiments support the classification of S215L as a pathogenic mutation and support the hypothesis that an inability to adequately inhibit actomyosin interactions is the mechanism whereby thin-filament mutations cause HCM.

2.
J Mol Cell Cardiol ; 155: 50-57, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33647310

RESUMO

The cardiac thin filament is regulated in a Ca2+-dependent manner through conformational changes of troponin and tropomyosin (Tm). It has been generally understood that under conditions of low Ca2+ the inhibitory peptide domain (IP) of troponin I (TnI) binds to actin and holds Tm over the myosin binding sites on actin to prevent crossbridge formation. More recently, evidence that the C-terminal mobile domain (MD) of TnI also binds actin has made for a more complex scenario. This study uses a computational model to investigate the consequences of assuming that TnI regulates Tm movement via two actin-binding domains rather than one. First, a 16-state model of the cardiac thin filament regulatory unit was created with TnI-IP as the sole regulatory domain. Expansion of this to include TnI-MD formed a 24-state model. Comparison of these models showed that assumption of a second actin-binding site allows the individual domains to have a lower affinity for actin than would be required for IP acting alone. Indeed, setting actin affinities of the IP and MD to 25% of that assumed for the IP in the single-site model was sufficient to achieve precisely the same degree of Ca2+ regulation. We also tested the 24-state model's ability to represent steady-state experimental data in the case of disruption of either the IP or MD. We were able to capture qualitative changes in several properties that matched what was seen in the experimental data. Lastly, simulations were run to examine the effect of disruption of the IP or MD on twitch dynamics. Our results suggest that both domains are required to keep diastolic cross-bridge activity to a minimum and accelerate myofilament relaxation. Overall, our analyses support a paradigm in which two domains of TnI bind with moderate affinity to actin, working in tandem to complete Ca2+-dependent regulation of the thin filament.


Assuntos
Modelos Biológicos , Contração Miocárdica , Miofibrilas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Troponina I/metabolismo , Algoritmos , Animais , Humanos , Cadeias de Markov , Método de Monte Carlo , Ligação Proteica , Troponina I/química
3.
Metab Eng ; 55: 76-84, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226348

RESUMO

Monoterpene indole alkaloids (MIAs) from plants encompass a broad class of structurally complex and medicinally valuable natural products. MIAs are biologically derived from the universal precursor strictosidine. Although the strictosidine biosynthetic pathway has been identified and reconstituted, extensive work is required to optimize production of strictosidine and its precursors in yeast. In this study, we engineered a fully integrated and plasmid-free yeast strain with enhanced production of the monoterpene precursor geraniol. The geraniol biosynthetic pathway was targeted to the mitochondria to protect the GPP pool from consumption by the cytosolic ergosterol pathway. The mitochondrial geraniol producer showed a 6-fold increase in geraniol production compared to cytosolic producing strains. We further engineered the monoterpene-producing strain to synthesize the next intermediates in the strictosidine pathway: 8-hydroxygeraniol and nepetalactol. Integration of geraniol hydroxylase (G8H) from Catharanthus roseus led to essentially quantitative conversion of geraniol to 8-hydroxygeraniol at a titer of 227 mg/L in a fed-batch fermentation. Further introduction of geraniol oxidoreductase (GOR) and iridoid synthase (ISY) from C. roseus and tuning of the relative expression levels resulted in the first de novo nepetalactol production. The strategies developed in this work can facilitate future strain engineering for yeast production of later intermediates in the strictosidine biosynthetic pathway.


Assuntos
Engenharia Metabólica , Microrganismos Geneticamente Modificados , Mitocôndrias , Monoterpenos/metabolismo , Saccharomyces cerevisiae , Alcaloides de Vinca/biossíntese , Catharanthus/enzimologia , Catharanthus/genética , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...